A copula model for non-Gaussian multivariate spatial data
نویسندگان
چکیده
منابع مشابه
Spatial Interpolation Using Copula for non-Gaussian Modeling of Rainfall Data
‎One of the most useful tools for handling multivariate distributions of dependent variables in terms of their marginal distribution is a copula function‎. ‎The copula families capture a fair amount of attention due to their applicability and flexibility in describing the non-Gaussian spatial dependent data‎. ‎The particular properties of the spatial copula are rarely ...
متن کاملBayesian Analysis of Censored Spatial Data Based on a Non-Gaussian Model
Abstract: In this paper, we suggest using a skew Gaussian-log Gaussian model for the analysis of spatial censored data from a Bayesian point of view. This approach furnishes an extension of the skew log Gaussian model to accommodate to both skewness and heavy tails and also censored data. All of the characteristics mentioned are three pervasive features of spatial data. We utilize data augme...
متن کاملEvaluation and Application of the Gaussian-Log Gaussian Spatial Model for Robust Bayesian Prediction of Tehran Air Pollution Data
Air pollution is one of the major problems of Tehran metropolis. Regarding the fact that Tehran is surrounded by Alborz Mountains from three sides, the pollution due to the cars traffic and other polluting means causes the pollutants to be trapped in the city and have no exit without appropriate wind guff. Carbon monoxide (CO) is one of the most important sources of pollution in Tehran air. The...
متن کاملA Spatial Model for Multivariate Lattice Data
In this article, we develop Markov random field models for multivariate lattice data. Specific attention is given to building models that incorporate general forms of the spatial correlations and cross-correlations between variables at different sites. The methodology is applied to the problem of environmental equity. Using a Bayesian hierarchical model that is multivariate in form, we examine ...
متن کاملGaussian Copula Variational Autoencoders for Mixed Data
The variational autoencoder (VAE) is a generative model with continuous latent variables where a pair of probabilistic encoder (bottom-up) and decoder (topdown) is jointly learned by stochastic gradient variational Bayes. We first elaborate Gaussian VAE, approximating the local covariance matrix of the decoder as an outer product of the principal direction at a position determined by a sample d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2019
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2018.09.007